Search-Based Depth Estimation via Coupled Dictionary Learning with Large-Margin Structure Inference
نویسندگان
چکیده
Depth estimation from a single image is an emerging topic in computer vision and beyond. To this end, the existing works typically train a depth regressor from visual appearance. However, the state-of-the-art performance of these schemes is still far from satisfactory, mainly because of the over-fitting and under-fitting problems in regressor training. In this paper, we offer a different data-driven paradigm of estimating depth from a single image, which formulates depth estimation from a search-based perspective. In particular, we handle the depth estimation of local patches via a novel cross-modality retrieval scheme, which searches for the 3D patches with similar structure/appearance to the 2D query from a dataset with 2D-3D mappings. To that effect, a coupled dictionary learning formulation is proposed to link the 2D query with the 3D patches, on the reconstruction coefficients to capture the cross-modality similarity, to obtain a rough depth estimation locally. In addition, consistency on spatial context is further introduced to refine the local depth estimation using a Conditional Random Field. We demonstrate the efficacy of the proposed method by comparing it with the state-of-the-art approaches on popular public datasets such as Make3D and NYUv2, upon which significant performance gains are reported.
منابع مشابه
A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملMultivariate Estimation of Rock Mass Characteristics Respect to Depth Using ANFIS Based Subtractive Clustering- Khorramabad- Polezal Freeway Tunnels
Combination of Adoptive Network based Fuzzy Inference System (ANFIS) and subtractive clustering (SC) has been used for estimation of deformation modulus (Em) and rock mass strength (UCSm) considering depth of measurement. To do this, learning of the ANFIS based subtractive clustering (ANFISBSC) was performed firstly on 125 measurements of 9 variables such as rock mass strength (UCSm), deformati...
متن کاملUnderdetermined Wideband DOA Estimation for Off-Grid Sources with Coprime Array Using Sparse Bayesian Learning
Sparse Bayesian learning (SBL) is applied to the coprime array for underdetermined wideband direction of arrival (DOA) estimation. Using the augmented covariance matrix, the coprime array can achieve a higher number of degrees of freedom (DOFs) to resolve more sources than the number of physical sensors. The sparse-based DOA estimation can deteriorate the detection and estimation performance be...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کامل